Summary
Matthew Tucker is a Professor in the Department of Chemistry at the University of Nevada, Reno. His research focuses on the development and application of novel, ultrafast laser spectroscopy techniques to observe the interplay of structure and dynamics in biologically relevant systems.
Research interests
A major thrust of my research focuses on the development and application of novel, ultrafast laser spectroscopy techniques to observe the interplay of structure and dynamics in biologically relevant systems. Femtosecond (10-15 s) laser pulses are employed to explore new linear and nonlinear infrared spectroscopic properties of molecular systems. Initiation methods, such as optical triggering, in conjunction with two-dimensional infrared (2D IR) spectroscopy are used to acquire atomic level structural information to generate snapshots of the structural evolution in various biophysical events. Such research provides an atomistic window into drug action, protein motion and folding events, the dynamical behavior of membrane proteins, or the fast folding of RNAs, all pivotal to combat prevalent diseases and to guide drug discovery.
2D IR photon echo experiments, through a detailed analysis of spectral lineshapes, cross-peaks, and time dependent changes of the spectral signatures, allow for a direct observation of site-specific events by measuring couplings between vibrations, the appearance of energy transfer, spectral diffusion or chemical exchange events. My research develops and utilizes a variety of current and novel infrared markers as spectroscopic rulers that deliver site-specific structural changes and their time dependence. In addition, the 2D IR spectral dynamics of the vibrational markers allow detection of the properties of water local to the regions of interest. Spectral simulation brings the results of these novel experimental techniques into relationship with theory, such as molecular dynamics and quantum mechanics.
Students in my group are exposed to both hands-on experimental laser-based research as well as the application of theory to understand the spectroscopy. They have the opportunity to work with modern ultrafast laser techniques and learn how such experiments can be applied to understand intrinsic biophysical questions. Other spectroscopic techniques, such as circular dichroism, absorption, fluorescence and vibrational spectroscopy are also utilized.
News features
Education
- NIH BTRC Ultrafast Optical Processes Laboratory Staff Scientist (2012-2013)
- Postdoctoral (2006-2011), University of Pennsylvania (Robin M. Hochstrasser)
- Ph.D. (2006), University of Pennsylvania (Feng Gai)
- B.S., B.A. (2000), University of Scranton
Selected publications
- Mallon, C. J.; Hassani, M.; Osofsky, E. H.; Familo, S. B.; Fenlon, E. E.; Tucker, M. J. Unraveling Hydration Shell Dynamics and Viscosity Effects Around Cyanamide Probes via 2D IR Spectroscopy. Am. Chem. Soc. 2024, 147(9), 7264-7273.
- Tucker, M. J.; Mallon, C. J.; Hassani, M. The Long and Short of Coupling and Uncoupling via 2D IR Spectroscopy. Phys. Chem. B 2024, 129(5), 1439-1452.
- Mahmud, T.; Moore, D. C.; Dergachev, I. D.; Sun, H.; Varganov, S. A.; Tucker, M. J.; Jeffrey, C. S. Cortical polysaccharides play a crucial role in lichen UV protection. Cell Rep. Phys. Sci. 2024, 5(10), 102242.
- Filbin, C. J.; Haque, M. H.; Locke, C. K.; Mallon, C. J.; Curtis, K.; Osho, K. E.; Borotto, N. B.; Tucker, M. J.; Odoh, S. O.; Yang, Y. Reversible Photochromism of 4,4’‐Disubstituted 2,2’‐Bipyridine in the Presence of SO3. Phys. Chem. 2024, 25(17), e202400150.
- Hassani, M.; Moore, D. C.; Roberson, M. G.; Kashid, S.; Tucker, M. J. Effects of spectral density on the azide vibrational transition in water versus D2O. Phys. Lett. 2023, 828, 140723.
- Mondol, P.; Hassani, M.; Tucker, M. J.; Barile, C. J. Electrocatalytic oxygen reduction by Cu complexes of tripeptide derivatives of glutathione. Phys. Chem. C 2023, 127(28), 13518-13528.
- Hassani, M.; Mallon, C. J.; Monzy, J. N.; Schmitz, A. J.; Brewer, S. H.; Fenlon, E. E.; Tucker, M. J. Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect. Chem. Phys. 2023, 158(22), 224201.
- Monteiro, J. H. S. K.; Fetto, N. R.; Tucker, M. J.; Sigoli, F. A.; de Bettencourt-Dias, A. Carbazole-functionalized dipicolinato LnIII complexes show two-photon excitation and viscosity-sensitive metal-centered emission. J. Lumin. 2022, 245, 118768.
- Barakoti, K. K.; Subedi, P.; Chalyavi, F.; Gutierrez-Portocarrero, S.; Tucker, M. J.; Alpuche-Aviles, M. A. Formaldehyde analysis in non-aqueous methanol solutions by infrared spectroscopy and electrospray ionization. Chem. 2021, 9, 678112.
- Chalyavi, F.; Adeyiga, O.; Weiner, J. M.; Monzy, J. N.; Schmitz, A. J.; Nguyen, J. K.; Fenlon, E. E.; Brewer, S. H.; Odoh, S. O.; Tucker, M. J. 2D-IR studies of cyanamides (NCN) as spectroscopic reporters of dynamics in biomolecules: Uncovering the origin of mysterious peaks. Chem. Phys. 2020, 152(7), 074201.
- Monteiro J. H. S. K.; Fetto, N. R.; Tucker, M. J.; de Bettencourt-Dias, A. Luminescent Carbazole-Based EuIII and YbIII Complexes with a High Two-Photon Absorption Cross-Section Enable Viscosity Sensing in the Visible and Near IR with One- and Two-Photon Excitation. Chem. 2020, 59(5), 3193-3199.
- Chalyavi, F.; Schmitz, A. J.; Tucker, M. J. Unperturbed detection of the dynamic structure in the hydrophobic core of Trp-Cage via two-dimensional infrared spectroscopy. Phys. Chem. Lett. 2020, 11(3), 832-837.
- Roberson, M. G.; Duncan, J. M.; Flieth, K. J.; Geary, L. M.; Tucker, M. J. Photo-initiated rupture of azobenzene micelles to enable the spectroscopic analysis of antimicrobial peptide dynamics. RSC advances 2020, 10(36), 21464-21472.
- Gautam, R. P.; Pan, H.; Chalyavi, F.; Tucker, M. J.; Barile, C. J. Nanostructured Ni–Cu electrocatalysts for the oxygen evolution reaction. Sci. Technol. 2020, 10(15), 4960-4967.
- Chalyavi, F.; Schmitz, A. J.; Fetto, N. F.; Tucker, M. J.; Brewer, S. H.; Fenlon, E. E. Extending the vibrational lifetime of azides with heavy atoms. Chem. Chem. Phys. 2020, 22(32), 18007-18013.