skip to main content

Matthew J. Tucker

Assistant Professor

Matthew Tucker

Contact Information

Degrees

  • NIH BTRC Ultrafast Optical Processes Laboratory Staff Scientist (2012-2013)
  • Postdoctoral (2006-2011), University of Pennsylvania (Robin M. Hochstrasser)
  • Ph.D. (2006), University of Pennsylvania (Feng Gai)
  • B.S., B.A. (2000), University of Scranton

Research Interests

A major thrust of my research focuses on the development and application of novel, ultrafast laser spectroscopy techniques to observe the interplay of structure and dynamics in biologically relevant systems. Femtosecond (10-15 s) laser pulses are employed to explore new linear and nonlinear infrared spectroscopic properties of molecular systems. Initiation methods, such as optical triggering, in conjunction with two-dimensional infrared (2D IR) spectroscopy are used to acquire atomic level structural information to generate snapshots of the structural evolution in various biophysical events. Such research provides an atomistic window into drug action, protein motion and folding events, the dynamical behavior of membrane proteins, or the fast folding of RNAs, all pivotal to combat prevalent diseases and to guide drug discovery.
Fourier transform
2D IR photon echo experiments, through a detailed analysis of spectral lineshapes, cross-peaks, and time dependent changes of the spectral signatures, allow for a direct observation of site-specific events by measuring couplings between vibrations, the appearance of energy transfer, spectral diffusion or chemical exchange events. My research develops and utilizes a variety of current and novel infrared markers as spectroscopic rulers that deliver site-specific structural changes and their time dependence. In addition, the 2D IR spectral dynamics of the vibrational markers allow detection of the properties of water local to the regions of interest. Spectral simulation brings the results of these novel experimental techniques into relationship with theory, such as molecular dynamics and quantum mechanics.
initiation process
Students in my group are exposed to both hands-on experimental laser-based research as well as the application of theory to understand the spectroscopy. They have the opportunity to work with modern ultrafast laser techniques and learn how such experiments can be applied to understand intrinsic biophysical questions. Other spectroscopic techniques, such as circular dichroism, absorption, fluorescence, and vibrational spectroscopy are also utilized.

Publications

  • Pazos, I.M.; Ghosh, A.; Tucker, M.J.; Gai, F.  Ester Carbonyl Vibration as a Sensitive Probe of Protein Local Electric Field. Angew. Chem., Int. Ed. 2014, 53, 6080-6084.
  • Ghosh, A.; Tucker, M.J.; Gai, F.  2D IR Spectroscopy of Histidine:  Probing Side-​Chain Structure and Dynamics via Backbone Amide Vibrations.  J. Phys. Chem. B 2014, 118, 7799-7805.
  • Courter, J.R.; Abdo, M.; Brown, S.P.; Tucker, M.J.; Hochstrasser, R.M.; Smith, A.B., III.  The Design and Synthesis of Alanine-​Rich α-​Helical Peptides Constrained by an S,​S-​Tetrazine Photochemical Trigger:  A Fragment Union Approach.  J. Org. Chem. 2014, 79, 759-768.
  • Tucker, M.J.; Abdo, M.; Courter, J.R.; Chen, J.; Brown, S.P.; Smith, A.B., III; Hochstrasser, R.M.  Nonequilibrium dynamics of helix reorganization observed by transient 2D IR spectroscopy.  Proc. Nat. Acad. Sci. U.S.A. 2013, 110, 17314-17319, S17314/1-S17314/17.
  • Abdo, M.; Brown, S.P.; Courter, J.R.; Tucker, M.J.; Hochstrasser, R.M.; Smith, A.B.  Design, synthesis, and photochemical validation of peptide linchpins containing the S,​S-​tetrazine phototrigger.  Org. Lett. 2012, 14, 3518-3521.
  • Tucker, M.J.; Abdo, M.; Courter, J.R.; Chen, J.; Smith III, A.B.; Hochstrasser, R.M.  Dicysteine S,S-tetrazine:  A potential ultra-fast photochemical trigger to explore the early events of peptide/protein folding.  J. Photochem. Photobiol., A 2012, 234, 156-163.
  • Ghosh, A.; Tucker, M.J.; Hochstrasser, R.M.  The identification of arginine residues in peptides by 2D-IR echo spectroscopy.  J. Phys. Chem. A 2011, 115, 9731-9738.
  • Tucker, M.J.; Gai, X.S.; Fenlon, E.F.; Brewer, S.; Hochstrasser, R.M.  2DIR Photon Echo of Azido-Probes for Nucleic Acids.  Phys. Chem. Chem. Phys. 2011, 13, 2237-2241.
  • Tucker, M.J.; Courter, J.R.; Chen, J.; Atasoylu, O.; Smith III, A.B.; Hochstrasser, R.M.  Tetrazine Phototriggers:  Probes of Protein Dynamics.  Angew. Chem. 2010, 49, 3612-3616.  Communication Cover Article (Highlighted in April 26, 2010 issue of Chem. Eng. News)
  • Tucker, M.J.; Serrano, A.L.; Gai, F.  Direct Assessment of the alpha-Helix Nucleation Time.  J. Phys. Chem. B 2011, 115, 7472-7478.
  • Tucker, M.J.; Kim, Y.S.; Hochstrasser, R.M.  2D IR photon echo study of anharmonic coupling in the OCN region of phenyl cyanate.  Chem. Phys. Lett. 2009, 470, 80-84.
  • Ghosh, A.; Remorino, A.; Tucker, M.J.; Hochstrasser, R.M.  2D IR photon echo spectroscopy reveals hydrogen bond dynamics in aromatic nitriles.  Chem. Phys. Lett. 2009, 469, 325-330.
  • Waegele, M.M.; Tucker, M.J.; Gai, F.  5-Cyanotryptophan as infrared probe of local hydration status in proteins.  Chem. Phys. Lett. 2009, 478, 249-253.
  • Tucker, M.J.; Oyola, R.; Gai, F.  Exploring the feasibility of using p-cyano-phenylalanine as a sensitive fluorescent probe in binding and folding.  Biopolymers 2006, 83, 571-576.
  • Tucker, M.J.; Tang, J.; Gai, F.  A new method to probe the membrane-assisted helix folding dynamics.  J. Phys. Chem. B 2006, 110, 8105-8109.
  • Tucker, M.J.; Oyola, R.; Gai, F.  Conformational distribution of a 14-residue peptide in solution:  A FRET study.  J. Phys. Chem. B 2005, 109, 4788-4785.
  • Tucker, M.J.; Getahun, Z.; Nanda, V.; DeGrado, W.F.; Gai, F.  A new method for determining the conformation and orientation of membrane-binding peptides.  J. Am. Chem. Soc. 2004, 126, 5078-5079.

Take the next step...