David Feil-Seifer

David Feil-Seifer

Using Socially Assistive Robot Assistants to Augment Neuro-Rehabilitation Exercise Therapy

Stroke and other Traumatic Brain Injuries are major causes of neurological disability. Most of those affected are left with some loss of movement, speech difficulties, and cognitive deficits.
Concerted rehabilitation during the neuroplasticicty period following a stroke can help a patient recover some of their lost function. For upper-limb hemiperisis in stroke recovery, through concerted use and training of the affected limb during the critical post-stroke period, such disability can be significantly reduced. The rate and amount of recovery greatly depends on the amount of focused training, along with stroke severity and cognitive availability. Evidence shows that the intensity and frequency of focused therapy can improve functional outcomes. The goal of this project is to develop healthcare and education robots that effect positive long-term behavioral changes. This includes helping children with developmental disorders to socialize in a positive way, encouraging positive user health choices, and assisting in physical rehabilitation.

Since such rehabilitation normally requires supervision of trained professionals, lack of resources (i.e., workforce shortage, insurance shortfalls, patient non-compliance) limits the amount of time available for supervised rehabilitation. As a result, the quality of life of patients with TBI or stroke is dramatically reduced, and medical costs and lost productivity continue to be incurred. In addition, a growing rate of diagnosis, an aging population, and geographic disparities are contributing to inadequate health resources to meet the care needs. Socially Assistive Robotics (SAR) can potentially address these care caps. A critical deficit for the development and adoption of SAR in care scenarios is the lack of performance and study of long-term Human-Robot Interaction in care settings. While there has been an explosion of research into HRI over the last decade, a large majority of this work examines short-term SAR scenarios. Furthermore, studies that have examined long-term HRI scenarios have been very specialized in nature, none of which involves neurorebailitation care for patients with TBI. This project aims to bridge that gap.