Lars Strother

Strother Lab

Word recognition and the visual cortical processing of two-dimensional shape information

Normal sighted reading relies heavily on human visual system. Despite immense progress in understanding human vision, the visual processing of letters and words during reading is not well understood. The ultimate goal of this research is to understand the role of visual cortex in word recognition, a fundamental component of reading. Specifically, this project seeks to understand how our visual system allows us to use two-dimensional (2D) shape information to quickly and effortlessly recognize familiar letters and words. Although word recognition relies on mechanisms that process 2D shape information during the visual perception and recognition of non-word objects and scenes, preliminary and published (e.g. Strother et al., 2016) research strongly suggests that the visual system processes 2D shape information comprising letters and words differently than it does 2D information in non-word objects. My lab uses functional neuroimaging (fMRI, NIRS and EEG) to study the visual cortical basis of word recognition. We are currently focusing on the neural integration of individual letters into words, which relies on interhemispheric transfer of visual information split between the right and left visual hemifields, and also the neural basis of invariant visual representations of letters and words with respect to retinal location. The proposed research will considerably expand our knowledge of the sensory basis of reading and its foundation in both general purpose mechanisms, some of which become developmentally specialized for word recognition, and sometimes fail in impaired readers.