Benefit-Cost Analysis for Transportation Projects

Anabel Hernandez
Center for Advanced Transportation Education and Research
Department of Civil & Environmental Engineering
University of Nevada, Reno
Outline

- Introduction
- Procedure
- Models
- Issues
- Conclusions
Introduction

- Evaluation of economic advantages and disadvantages of a set of investment alternatives
- Good practice to perform benefit-cost analysis during all stages of a project
- Results important in prioritization
Procedure

Stages of benefit-cost analysis development:

- Planning
- Engineering Analysis
- Economic Valuation
- Evaluating results
Procedure

User Input information:

- Project Type
- Location
- Length of Construction Period
- Estimated Length of Peak Period
- AADT
- Crash data
Procedure

Parameters:

- Discount rate
- Value of Time
- Crash Rates
- Emission Costs
Procedure

Analysis:

Benefits:

- Travel-Time Savings
- Vehicle Operating Cost Savings
- Accident Cost Savings
- Emission Reduction
Procedure

Analysis:

Costs:

- Capital Costs
- Operational/Maintenance Costs
- Rehabilitation Costs
Models

Three main categories:

- Sketch-planning methods
- Post-processing methods
- Multiresolution/Multiscenario methods
Models

- **Sketch-planning methods:**
 - Spreadsheet based
 - Best for early stages of planning
 - Advantages:
 - Easy to use
 - Limited data required
 - Faster setup and analysis
 - Lower cost
 - Customizable

www.ces-1.com
Models

- Sketch-planning methods:
 - Disadvantages:
 - Results best for low to moderate level of analysis
 - Limited measures of effectiveness
 - Linear assumptions for user behavior
Models

- **Post-processing methods:**
 - Customized interfaces
 - Best for mid to late stages of prioritization
 - Advantages:
 - Analysis of traveler behavior
 - Data availability
 - Consistent with regional planning
 - Reusable process
Models

- **Post-processing methods:**
 - Disadvantages:
 - Effort of analysis
 - Compatibility with tools available
Models

- **Multiresolution/Multiscenario methods:**
 - Most complex method
 - Best during final design phase
 - Advantages:
 - Access both short and long term travel behaviors
 - Dynamically model conditions
 - Detail of analysis
 - Flexible method of analysis
Models

- Multiresolution/multiscenario methods:
 - Disadvantages:
 - Effort of analysis
 - Compatibility with tools available
 - Scope limited
Models

- BCA.Net
- Cal B/C
- AASTHO Redbook
- Surface Transportation Efficiency Analysis Module (STEAM)
BCA.net

- Developed by FHWA
- Web-based
- Post-processing method
Cal B/C

- Benefit-cost analysis model developed by Caltrans.
- Sketch-planning tool
- Highway and transit projects.
Cal B/C

PROJECT DATA

HIGHWAY ACCIDENT DATA

HIGHWAY DESIGN AND TRAFFIC DATA

RAIL AND TRANSIT DATA
Parameters

This page contains all economic values and rate tables. To update economic values automatically, change "Economic Update Factor."

General Economic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of Current Dollars for Model</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Economic Update Factor (Using GDP Deflator)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Real Discount Rate</td>
<td>3.0%</td>
<td></td>
</tr>
</tbody>
</table>

Travel Time Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide Average Hourly Wage</td>
<td>$20.30</td>
<td>$/hr</td>
</tr>
<tr>
<td>Heavy and Light Truck Drivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Hourly Wage</td>
<td>$18.65</td>
<td>$/hr</td>
</tr>
<tr>
<td>Benefits and Costs</td>
<td>$10.15</td>
<td>$/hr</td>
</tr>
<tr>
<td>Value of Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automobile</td>
<td>$11.26</td>
<td>$/hr/per</td>
</tr>
<tr>
<td>Truck</td>
<td>$34.54</td>
<td>$/hr/veh</td>
</tr>
<tr>
<td>Auto & Truck Composite</td>
<td>$16.45</td>
<td>$/hr/veh</td>
</tr>
<tr>
<td>Transit</td>
<td>$10.15</td>
<td>$/hr/per</td>
</tr>
<tr>
<td>Out-of-Vehicle Travel</td>
<td>2</td>
<td>times</td>
</tr>
<tr>
<td>Incident-Related Travel</td>
<td>3</td>
<td>times</td>
</tr>
<tr>
<td>Travel Time Uprate</td>
<td>0.0%</td>
<td>annual incr</td>
</tr>
</tbody>
</table>

Highway Operations Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum V/C Ratio</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Percent ADT in Peak Period</td>
<td>41.0%</td>
<td>%</td>
</tr>
<tr>
<td>Percent ADT in Average Peak Hour</td>
<td>8.2%</td>
<td>%</td>
</tr>
<tr>
<td>Annualization Factor</td>
<td>365</td>
<td>days/yr</td>
</tr>
</tbody>
</table>

Vehicle Operating Cost Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Alpha</th>
<th>Beta</th>
<th>Capacity (vphpl)</th>
<th>Dep. Rate (vphpl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>0.20</td>
<td>10</td>
<td>2,000</td>
<td>1,800</td>
</tr>
<tr>
<td>Expressway</td>
<td>0.20</td>
<td>10</td>
<td>2,000</td>
<td>1,800</td>
</tr>
<tr>
<td>Conventional Highway</td>
<td>0.05</td>
<td>10</td>
<td>800</td>
<td>1,400</td>
</tr>
<tr>
<td>HDV Lanes</td>
<td>0.55</td>
<td>8</td>
<td>1,600</td>
<td></td>
</tr>
<tr>
<td>Non-HOV Lanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Build</td>
<td>0.20</td>
<td>10</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td>Build</td>
<td>0.20</td>
<td>10</td>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>
AASHTO Red Book

- Developed by AASHTO
- Sketch-planning tool
- Excel spreadsheet with wizard integrated
AASHTO Red Book

Redbook Wizard

To begin, save a copy of this file under a new name, and then continue.

Go!
Roadside & Lighting Improvements
You'll need to provide the following information about roadside and lighting improvements:

* New peak hour, peak direction traffic volume (PCE/h)
* Free flow speed (mph)
* New peak direction capacity (veh/h)
* Number of accidents by type (property damage, injury, fatal)
* Agency operating costs

The following Redbook sections provide more information:

* Pages 5-38 to 5-40
* Equation 5-22
* Table 5-11
STEAM

- Developed in 1997 by FHWA
- Four module
 - User interface module
 - Trip table analysis module
 - Evaluation summary module
- Used for system-wide analysis
- Provides analysis for 7 modes of transportation
Issues

- No general consensus of valuation of economic parameters
 - Crash costs
- No one program suitable for all project types
- Agencies should provide guidance and training
Conclusion

- Best to conduct benefit-cost analysis are can be done within different stages of a project in order to measure its advantages over its disadvantages.
- Many models available to conduct Benefit-Cost analysis.
- Understand project scope to better choose level of analysis.
- Differences in economic values cause for varying results.
References

- AASHTO Redbook Wizard
- BCA.net Model
- California Life-Cycle Benefit/Cost Analysis Model

https://sites.google.com/site/benefitcostanalysis/
Questions