A Novel Signal Phasing Scheme in a Complete Street Project: A Case Study in Reno, Nevada

Rui Yue
University of Nevada, Reno
Center for Advanced Transportation Education and Research
Apr 5th, 2018
Contents

• Background Introduction
• Data Collection
• Road Network
• Signal Timing and Phase Scheme
• Simulation and Results Analysis
• Discussion of New Phasing Scheme
• Conclusion and Future Study
Background Introduction

- What is a complete street?
 - Vehicles/Motorcycles
 - Bicycles
 - Pedestrians
- What impacts will be generated to implement a complete street?
 - Road diet--Unfriendly to vehicles
 - Road extend--Friendly to other modes
- Background of California/Booth/Keystone
 - Two Three-leg intersections
 - Intersections on a slope
 - Pavement could not be extended
 - Lacking bicycle lanes
- Road diet
Existing and Proposed Conditions

• Existing Lane Configurations

• Proposed Lane Configurations
Data Collection

- Conducted on Tuesday
- Collected peak hour turning volumes
- Collected both AM and PM data
- Video cameras were used
- Peak 15-min flow rates were extracted for Synchro
- Current four-lane Configurations

Road Network
- Constructed based on actual scale
- Same background map

- Future three-lane Configurations
• Existing Two-Controller Phasing Scheme (Traditional)

Signal Timing and Phase Scheme

• An 80 sec cycle length was used
• Proper splits were divided
• Same signal timing plans were applied

• Proposed One-Controller Phasing Scheme (New)
Results Analysis

- No significant difference were found between new scheme results and old scheme results
- Future conditions performed worse than existing conditions, but not too much
- LOS dropped to C in some future conditions, but they were acceptable

Average Delay Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>Current Geometry</th>
<th>Future Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>Traditional Phase Scheme</td>
<td>AM</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>9.9</td>
</tr>
<tr>
<td>New Phase Scheme</td>
<td>AM</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Average Stops Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>Current Geometry</th>
<th>Future Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>Traditional Phase Scheme</td>
<td>AM</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.33</td>
</tr>
<tr>
<td>New Phase Scheme</td>
<td>AM</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.34</td>
</tr>
</tbody>
</table>

LOS Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>Current Geometry</th>
<th>Future Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>Traditional Phase Scheme</td>
<td>AM</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>A</td>
</tr>
<tr>
<td>New Phase Scheme</td>
<td>AM</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>A</td>
</tr>
</tbody>
</table>
Discussion of New Phasing Scheme

- **Engineers’ efficiency**
 - Do not need to follow NEMA phases locations
 - Counter-clockwise numbered
 - One ring-barrier structure
 - Free of determining coordination offsets
 - Intersections were controlled by rings
 - Same direction movements could be reflected
 - Odd numbers to label the non-opposite traffic legs

- **Cost efficiency**
 - The area were controlled by one controller
Conclusion and Future Study

• **Conclusion**
 • Both the traditional phase scheme and the proposed phase scheme can successfully accommodate the complete street project.
 • The proposed phasing scheme is more efficient than the traditional phasing scheme.
 • The two three-leg connected intersections can use this scheme.

• **Future Study**
 • How could we find more accommodated cases that can apply new scheme?
Thank you!