On-Ramp Flow Arrival Pattern Impacts on Ramp-Metering Queue

GUANGCHUAN YANG

Graduate Research Assistant
Center for Advanced Transportation Education and Research
University of Nevada, Reno
Reno, NV89557

April 28, 2016
Presentation Overview

- Background Introduction
- Queue Length Modeling
- Mesoscopic Queue Length Simulation
- Queue Storage Length Recommendations
- Major Findings
Why Ramp Metering?

- **Tactical Level – Control existing demands**
 - “Access rate reduction technique” to ensure total demands not to exceed freeway capacity
 - Break up vehicle platoons entering freeway

- **Strategic Level – Reduce potential demands**
 - Stimulate carpool use
 - Reduce peak hour demand
 - Shift certain traffic to local road
Metered On-Ramp

Freeway Mainline

Ramp Meter

Downstream Acceleration Distance

Upstream Queue Storage Space
Challenges

What’s an adequate queue storage length to:

- Ensure the vehicle queue does not spillback to upstream
- Balance queue storage length and acceleration length when existing ramps are retrofitted with meters
State-of-the-Art

- **Maximum Individual Delay-Based Estimation (California, Australia)**
 \[S = \left(\frac{d_{\text{max}}}{60} \times 100\% \right) \times \mu \]

- **Average Delay-Based Estimation (Minnesota, Wisconsin)**
 \[S = \left(\frac{d}{60} \times 100\% \right) \times \lambda \]

- **Mimic signalized intersection (Nevada)**
 \[S = \left(\frac{C}{3600} \times 100\% \right) \times \left(\lambda \times \frac{D}{PHF} \right) \]

- **Regression equations (Texas Transportation Institute)**
 \[S = \left((3.28 \times 10^{-2} - 9.74 \times 10^{-6} \cdot V) \times 100\% \right) \cdot V \]

- **Real-time queue length estimation**

Queue storage as a percentage of peak hour demand ranging between 2%-10%

Issues with Existing Study

- Queuing theory based model usually provides only the average queue length.

- Real-time queue length estimation studies were mostly for developing real-time ramp metering control algorithms rather than queue storage design.

- Queue length estimation and queue storage design need to take into consideration the unique and varying on-ramp flow arrive patterns.
What Is On-Ramp Flow Arrive Profile?
Two On-Ramp Types

- Arterial to Freeway On-Ramp
 - Onramp traffic usually controlled by upstream signal

- Freeway to Freeway Connector
 - No upstream signal
 - Onramp flow arrives at a more random manner
Observed On-Ramp Arrival Profiles at 15 sec Level
On-Ramp Arrival Patterns (Cont.)

On-Ramp Arrival Flow (veh)

Time (sec)

Center/I-80 Reno

SR 262/I-880 Bay Area
Modeling Queuing
Accumulate Arrival Departure Chart
(The Input-Output Model)

The “Newell Curve”

Gordon F. Newell
(1925 - 2001)

Foundation Scientist in Transportation Science

On-Ramp Flow Discharged from Upstream Signal

\[G_i^0 = \frac{A_i \times (C - G_i)}{S_i - A_i} \]
Description of On-Ramp Arrival Profile
Queue Generations at Metered On-Ramps

Cumulative Number of Vehicle (veh)

Max queue in the phase

Queue Cleared

Max queue in the phase

A_{TH}

S_{TH}

A_{RT}

S_{RT}

A_{LT}

Max queue in the phase

Departure

t_0 t_1 t_2 t_3 t_4 t_5 t_6

Time

Cycle Length

$\phi 1$ $\phi 2$ $\phi 4$
Mesoscopic Simulation
Why Simulation?

- **Data Availability**
 - Various combination of demand and capacity scenarios

- **Data Quality**
 - Randomness of traffic flow
 - Measurement error when queue spillovers

- **Field Measure Data**
 - Model verification and/or calibration
Mesoscopic Simulation Flow Charts

Freeway Connector

Arterial On-Ramp
User Interface – Arterial On-Ramp

<table>
<thead>
<tr>
<th>Category 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream Phase</td>
<td>OnRampFeeding</td>
</tr>
<tr>
<td>Phase 1: (LT)</td>
<td>Y</td>
</tr>
<tr>
<td>Phase 2: (RT)</td>
<td>Y</td>
</tr>
<tr>
<td>Phase 4: (TH)</td>
<td>Y</td>
</tr>
</tbody>
</table>

Upstream total on-ramp demand (vph): 1326

Upstream signal cycle length (sec): 90

Downstream average metering rate (vph): 1500

Maximum queue length: 38 Veh

95th queue length: 32 Veh
User Interface – Freeway Connector

Input Parameters

- Upstream Demand: 1200 vph
- Average Metering Rate: 1200 vph
- Analysis Interval: 15s

Output Results

- Maximum Queue: 70 veh
- 95th Percentile Queue: 64 veh

Display

Graph showing Queue, CummArr, and CummDep over time.
Field Data Collection

Diagram of an intersection showing:
- Freeway I-80
- Freeway On-Ramp
- Ramp Meter
- Camera 1: Upstream Demand
- Camera 3: Queue Length
- Camera 2: Metering Rate
Modeling vs. Observation – Arterial On-Ramp

![Graph showing Observed Queue and Modeling Result over time](image-url)
Modeling vs. Observation - Connector

![Graph showing the comparison between modeling and observation over time](image-url)
Queue Length Simulation Scenarios

<table>
<thead>
<tr>
<th>Simulation Scenarios</th>
<th>Average Metering Rate (vph)</th>
<th>Ramp Demand (vph)</th>
<th>Demand-to-Capacity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Metering Rate Scenarios</td>
<td>480</td>
<td>200 to 600</td>
<td>0.42 to 1.25</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>300 to 900</td>
<td>0.42 to 1.25</td>
</tr>
<tr>
<td></td>
<td>960</td>
<td>300 to 1,200</td>
<td>0.31 to 1.25</td>
</tr>
<tr>
<td></td>
<td>1,200</td>
<td>400 to 1,500</td>
<td>0.33 to 1.25</td>
</tr>
<tr>
<td>High Metering Rate Scenarios</td>
<td>1,440</td>
<td>500 to 1,800</td>
<td>0.35 to 1.25</td>
</tr>
<tr>
<td></td>
<td>1,680</td>
<td>600 to 2,100</td>
<td>0.36 to 1.25</td>
</tr>
<tr>
<td></td>
<td>1,920</td>
<td>700 to 2,400</td>
<td>0.36 to 1.25</td>
</tr>
<tr>
<td></td>
<td>2,160</td>
<td>900 to 2,700</td>
<td>0.42 to 1.25</td>
</tr>
<tr>
<td></td>
<td>2,400</td>
<td>1,000 to 3,000</td>
<td>0.42 to 1.25</td>
</tr>
</tbody>
</table>

- ✔ Demand increases from the low to the high boundary in 50 vph intervals
- ✔ 20 simulation runs for each demand-to-capacity scenario
Queue Length as % of Onramp Demand (Arterial On-Ramp)

Low Demand Scenario
(D < 500 vphpl)

High Demand Scenario
(500 < D < 900 vphpl)
Queue Length as % of Onramp Demand (Freeway Connector)

Low Demand Scenario (D < 500 vphpl)

High Demand Scenario (500 < D < 900 vphpl)
Simulation vs. Field Data (Arterial On-Ramp)

Low Demand Scenario
(D < 500 vphpl)

High Demand Scenario
(500 < D < 900 vphpl)
Simulation vs. Field Data
(Freeway Connector)
Queue Storage Length Recommendations

<table>
<thead>
<tr>
<th>Demand to Capacity Ratio</th>
<th>Queue Length as Percentage of Ramp Demand</th>
<th>Low Demand Scenario</th>
<th>High Demand Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arterial On-Ramp</td>
<td>Freeway Connector</td>
<td>Arterial On-Ramp</td>
</tr>
<tr>
<td>0.4</td>
<td>0.7%</td>
<td>0.6%</td>
<td>0.3%</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>0.6</td>
<td>1.4%</td>
<td>1.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>0.7</td>
<td>2.0%</td>
<td>1.6%</td>
<td>1.2%</td>
</tr>
<tr>
<td>0.8</td>
<td>2.8%</td>
<td>2.3%</td>
<td>1.7%</td>
</tr>
<tr>
<td>0.9</td>
<td>4.0%</td>
<td>3.2%</td>
<td>2.6%</td>
</tr>
<tr>
<td>1.0</td>
<td>6.2%</td>
<td>4.3%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>
Major Findings

- On-ramp flow arrive pattern affects queue length; a **vehicle platoon** released from upstream signal tends to exacerbate queue length.

- When $v/c < 1$, queue length shows an **exponential** increasing trend with v/c ratio; when $v/c > 1$, queue length tends to increase **linearly** with v/c ratio.

- When $D < 1000$ vph, the required queue storage length is approximately **6.2 percent (4.3 percent)** of demand for arterial on-ramps (freeway connectors).

- When $1000 < D < 1800$ vph, the required queue storage length is approximately **4 percent (2.3 percent)** of demand for arterial on-ramps (freeway connectors).
Future Works

Right-Turn-On-Red Impacts on Queueing
- 1 uninterrupted direct feeding
- 2 direct feedings under a 3 stage signal timing control strategy

Platoon Dispersion/Decay Impacts on Queueing
- 3 direct feedings under a 3 stage signal timing control strategy
- 1 direct feeding under upstream signal control; traffic diverge at ramp entrance
Acknowledgements

This research was sponsored by the California Department of Transportation (Caltrans).

The presenter thanks Dr. Zong Tian and Dr. Hao Xu for guiding this study; Dr. Zhongren Wang from Caltrans Headquarter and Mr. Arafat Khan for their discussions.

Special thanks to Dr. Daobin Wang from UNR CATER for help coding the queue length simulation model, which makes the idea come true.

Questions and Suggestions

Guangchuan Yang

UNR CATER

Email: gyang@unr.edu