Brief Communication: Two-Rooted Lower Canines—A European Trait and Sensitive Indicator of Admixture Across Eurasia

Christine Lee1* and G. Richard Scott2

1Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing China 100044
2Department of Anthropology, University of Nevada Reno, Reno, NV 89557

KEY WORDS dental morphology; two-rooted lower canines; East Asia; migration

ABSTRACT With the exception of Carabelli’s trait, the European dentition is better known for the morphological traits that it does not exhibit rather than the ones that it does. One root trait, however, runs counter to the characterization of reduced and simplified European crowns and roots. Although a rare trait in general, two-rooted lower canines are much more common in Europeans than in any other regional grouping and, given adequate sample sizes, can be useful in evaluating gene flow between Europeans and neighboring groups. In European samples, two-rooted lower canines consistently exhibit frequencies of 5–8%. In our sample from northern Spain, the trait attains a frequency of almost 10%. In contrast, in Sub-Saharan Africans the trait is virtually unknown while in Asian and Asian-derived populations, it varies between 0.0 and 1.0%. Here we show that two-rooted canine frequencies for new migrants along the western frontiers of China and Mongolia ranged from 0–4%. These data suggest European-derived populations migrated into western China (Xinjiang Province) and Mongolia (Bayan Olgii Aimag) sometime during the late Bronze age (1000–400 BCE). Am J Phys Anthropol 146:481–485, 2011. © 2011 Wiley-Liss, Inc.
east Asians. Recently, skeletal and mummified remains from the Tarim Basin in Xinjiang Province, China suggest an early movement of a new population with European features into what is now northwestern China (Han, 1994; Mallory and Mair, 2000; Cui et al., 2010; Zhang, 2010). If skeletal remains from this region are European in origin, this should be expressed in elevated frequencies of two-rooted lower canines. It is our hypothesis that the genetic traces of early European colonizers in northern Asia can be identified and verified by two-rooted lower canine frequencies.

MATERIALS AND METHODS

To test the proposition that a particular dental trait can be used to support European colonization in Asia, the authors collected data on a Spanish sample from Vitoria, Spain (n = 295) and a series of Asian samples from 74 sites in China and Mongolia (n = 970). The sample from Spain is comprised primarily of Basques. The burials cover the temporal span from the 11th to 19th centuries. Data on Asian populations were collected from archaeological and anatomical samples housed at the National University of Mongolia (Ulaan Baatar), National Museum of Mongolian History (Ulaan Baatar), Mongolian Archaeology Institute (Ulaan Baatar), Center for Chinese Frontier Archaeology, Jilin University (Changchun), the Chinese Institute of Archaeology (Beijing), and the Institute of Vertebrate Paleontology and Paleoanthropology (Beijing). These samples, dating from the Neolithic Period (3800 BCE) to the Republican Period (1949 CE), were divided into eight regions based on geographical zone and archaeological culture (Chang, 1986; Debaine-Francfort, 1995; Higham, 1996; Honeychurch and Amarvustshin, 2006) (see Fig. 1). Northeastern China is represented by samples from the Lower Xiajiadian, Upper Xiajiadian, and Koguryo archaeological cultures (Shenyang Cultural Relic Bureau, 2008). The Central Plains China region is the heartland of Chinese culture. The archaeological samples include the Neolithic Yangshao and Dawenkou, and the Bronze age Zhou and Qin (Chinese Archaeological Institute et al., 2002; Inner Mongolia Archaeological Institute, 2006; Suo, 2005). The western China and Mongolia region includes the Bronze age kurgan burials from the Altai and Tianshan mountain ranges, the oasis states of the Tarim Basin, and the Uyghur Empire (Volkov and Dorjauren, 1963; Novgorodova et al., 1982; Liu, 2002). Northern China includes samples from the Xianbei and Qidan nomadic tribes (Wei, 2004; Chen, 2009). Mongolia represents the Xiongnu and Mongol Empires based north of the Great Wall (Torbat, 2004; Miller et al., 2006; Lkhagvasuren, 2007). The Ordos region includes archaeological sites which were traditionally the buffer zone between the Chinese and Mongolian empires (Inner Mongolia Archaeological Institute, 1982, 1989; Yang, 2004). Northwestern China includes archaeological samples from along the Silk Road (Qinghai Archaeological Institute, 2007). Finally, the Southern China region includes archaeological samples along the southern frontier of the Chinese Empire (Jiang, 2011). More details on the Asian samples can be found in Lee (2007).

There are both positives and negatives to scoring root traits. On the positive side, they are relatively easy to score and, compared to crown traits, their presence is not impacted by dental wear. Moreover, the trait can often be scored when there are no teeth present, as two-rooted forms are clearly evident even in empty tooth sockets (Fig. 2A). On the negative side, the curation of skulls often involves gluing teeth into their sockets. In such instances, individuals cannot be scored and overall sample size is reduced.

We follow the principle of Turner et al. (1991) that to be scored as a two-rooted lower canine, the inter-radicular bifurcation between the buccal and lingual roots (radicals) should be at least 1/4th to 1/3rd of total root length (Fig. 2B). To derive total frequencies, the individual count method was used. That is, if either the left or right canine was two-rooted, the individual was scored as affected. Although there are several methods of tabulating crown and root traits, Scott (1980) demonstrated that scoring expression on all teeth (total tooth count), only left or only right teeth (side count), or the most pronounced expression on either antimere (individual count), yielded similar frequencies for Carabelli’s trait.
RESULTS

For rare traits like two-rooted lower canines, it is often difficult to test for sex differences because of low expected values. For the Asian samples, only 13 of 970 individuals exhibited the trait so it would not be statistically feasible to test sex dimorphism in this sample. For the Spanish sample, however, there was an incidence of 10.0% for males (11/110), 7.7% for females (10/130), and 10.9% for individuals of unknown sex (6/55). With expected values at or above 10, the χ^2 for sex dimorphism was 0.412 ($0.70 > P > 0.50$). In terms of mesiodistal and buccolingual diameters, the lower canine is the most sexually dimorphic tooth in humans (Garn et al., 1967). This dimorphism does not appear to extend to root number although small sample size precludes a definitive conclusion.

It is not possible in every instance to examine the roots of both antimeres, but in cases where both left and right canines could be scored, asymmetry was more common than symmetry. Of the 27 Spanish individuals who exhibited two-rooted lower canines, 19 were scored on both sides. In 13 instances, only one side expressed the trait. Of the 13, 6 were on the right side and 7 were on the left so there is no directional asymmetry. Only 6 of 19 individuals (31.6%) exhibited the trait on both sides of the jaw. With this degree of asymmetry, the individual count method would maximize trait frequencies. Given the overall rarity of the trait, however, this would not impact the relative frequencies of two-rooted lower canines among world populations.

In Table 2, the frequency variation of two-rooted canines is shown for the Spanish sample and the North Asian samples. Medieval and post-medieval populations in northern Spain (primarily Basque) revealed a two-rooted lower canine frequency of 9.2%, at or near the upper end of the range of variation for this trait. The populations of Northeastern China, Mongolia, and Northwestern China all have a frequency of 0.0%. Central Plains China, Southern China, and Northern China have frequencies of 1.0, 1.1, and 1.9%, respectively. The European-derived populations of Western China and Mongolia exhibit a frequency of 2.8%. The highest regional frequency of two-rooted lower canines among the Asian samples is from Ordos China at 4.0%.

DISCUSSION

One of the major concerns of Alexandersen (1963) regarding two-rooted lower canines revolved around the issue of “atavism.” This term, rarely used today, begs the question of whether or not this double rooted form was common at one time, then disappeared, only to reappear sometime later. Swindler (1995) notes that “the deciduous and permanent canines in the majority of living primates have a single root.” This suggests that two-rooted lower canines are not the ancestral condition in anthropoids or hominoids. Rather, the phenotype is a derived condition, found primarily in recent human populations distributed across Western Eurasia.

The presence of the two-rooted canines in East Asia may provide some clue as to the eastward migration of new populations into China and Mongolia. The largest numbers of individuals with this trait are concentrated along the western and northern frontiers of China and Mongolia. Archaeological excavations support the large scale movement of people into this area during the Bronze age (ca. 2200 BCE–400 BCE). Burial artifacts and settlement patterns suggest cultural and technological ties to the Afanasevo culture in Siberia, which in turn is linked archaeologically, linguistically, and genetically with the Indo-European Tocharian populations that appear to have migrated to the Tarim Basin ca. 4,000 years ago (Ma and Sun, 1992; Ma and Wang, 1992; Mallory and Mair, 2000; Romgard, 2008; Keyser et al., 2009; Li et al., 2010).

Fig. 2. Two-rooted lower canines. (A) Lower anterior teeth with postmortem loss of right canine, where two roots are easily visible in empty socket (arrow). (B) Two-rooted lower canine with inter-radicular projection extending about 2/3rd of total root length. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

<table>
<thead>
<tr>
<th>Sample(s)</th>
<th>Culture</th>
<th>Affected</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>Basque</td>
<td>27</td>
<td>295</td>
<td>9.2</td>
</tr>
<tr>
<td>Northeastern China</td>
<td>Lower Xijiaidian, Upper Xijiaidian, Koguryo</td>
<td>0</td>
<td>63</td>
<td>0.0</td>
</tr>
<tr>
<td>Central Plains China</td>
<td>Yangshao, Dawenkou, Zhou, Qin, Modern Han Chinese</td>
<td>3</td>
<td>292</td>
<td>1.0</td>
</tr>
<tr>
<td>Western China and Mongolia</td>
<td>Afanasevo, Scythian, Uighur</td>
<td>5</td>
<td>181</td>
<td>2.8</td>
</tr>
<tr>
<td>Northern China</td>
<td>Xianbei, Qidan</td>
<td>2</td>
<td>108</td>
<td>1.9</td>
</tr>
<tr>
<td>Mongolia</td>
<td>Xiongnu, Mongol</td>
<td>0</td>
<td>104</td>
<td>0.0</td>
</tr>
<tr>
<td>Ordos Region China</td>
<td>Ordos, Daihai</td>
<td>2</td>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td>Northwestern China</td>
<td>Qiija, Qiang</td>
<td>0</td>
<td>80</td>
<td>0.0</td>
</tr>
<tr>
<td>Southern China</td>
<td>Dian, non-Han Chinese</td>
<td>1</td>
<td>92</td>
<td>1.1</td>
</tr>
<tr>
<td>Asian Total</td>
<td></td>
<td>13</td>
<td>907</td>
<td>1.4</td>
</tr>
</tbody>
</table>

TABLE 2. Two-rooted lower canine variation in the study sample
The appearance of a new population on the western frontier also supports the findings of previous research in cranial metrics, dental nonmetrics, and DNA. Using cranial metrics and archaeological dating, Han (1994) hypothesized the earliest large-scale migration into western China occurred during the early Bronze age (2000 BCE) from Central Asia or southern Siberia. Dental nonmetric data also support multiple migrations into western China (Xinjiang Province) from Central Asia during the Bronze age to Iron age (Lee, 2007; Zhang, 2010). mtDNA studies on archaeological and modern population samples from Xinjiang Province show heterogeneous Asian and European genetic signatures dating from the Bronze age to the present (Yao et al., 2004; Cui et al., 2010; Zhang et al., 2010; Li et al., 2010).

As the frequency of two-rooted canines is highest in European samples and low to nonexistent in Asians, we propose this trait was introduced into East Asia by Indo-European speaking groups or their affines crossing the western frontier of China and Mongolia. Further data are needed to clarify aspects of these population movements, including the identity of the migrants, along with the number, routes, and timing of the migrations.

Although two-rooted lower canines cannot offer the precision of DNA in evaluating the ancestry in individual skulls, this trait is a sensitive indicator of admixture wherever Europeans come in contact with Asian or African populations. As this distinctive trait can be scored with relative ease in large samples, it provides a useful supplemental tool in discerning gene flow between distantly related populations going back many millennia.

LITERATURE CITED

American Journal of Physical Anthropology

Shaw JCM. 1931. The teeth, the bony palate and the mandible in Bantu races of South Africa. London: Bale and Danielsson.

