Vibration Analysis of Vehicle Bump at Bridge Deck and Approach Connecting Part

Jianqing Wu
Center for Advanced Transportation Education and Research
University of Nevada, Reno
October 27, 2016
Presentation Overview

1. Introduction
2. Data Processing
3. Vibration Analysis
4. Preliminary Findings
5. Summary
Vehicle Bump at Bridge Approach

- **Reason:** The bump was caused by uneven settlement of backfill soil and abutment, and bridge expansion joints.

- **Influence:** unbalanced force to wheels, dynamic load to bridge structure.
Problem Statement

• Any standard?

AASHTO LRFD Bridge Design Specifications provide countermeasures (soil compaction standard, backfill material) aim to reduce bump

• Unsolved Problems
 • The influence of vibration caused by bump on driver behavior
 • Guide for setting speed limit at bridge approach
 • Maintenance time for bridge approach
Objective

- Figure out the influence of bump on driver at existing bridge approach and deck connecting locations
- Provide speed limit setting recommendation for bridge approach
Data Source

• Trip Information:
The Strategic Highway Research Program 2 (SHRP 2) naturalistic driving study (NDS) data.

• Bridge feature:
Related Road Information Database (RID).

• Data Size
• 83 bridges on freeway (Length>0.05 mile)
• 60 trips
• 182 passing bridge records
Speed and Acceleration Analysis

- Bump Location identification:
 Check in ArcGIS, view forward videos

- Analysis time:
 1 seconds before and after the bump

- Preliminary results
 - Small speed change (85% trips <1.0 mph)
 - Why is vertical acceleration important?

Example of Speed and Vertical Acceleration
Vibration Analysis

• Methodology

Root mean square (r.m.s) of vertical acceleration in ISO 2631-1

\[
\text{r.m.s.} = \left[\frac{1}{T} \int_{t=0}^{t=T} a_w^2(t) \, dt \right]^{1/2}
\]

Where

- \(T \) is the measurement duration (2 seconds).
- \(a_w(t) \) is the frequency weighted acceleration at time \(t \) (vertical acceleration + 32.17 ft/s^2).

Result: average r.m.s = 1.81 ft/s^2

• Criteria

<table>
<thead>
<tr>
<th>r.m.s (ft/s^2)</th>
<th><1.033</th>
<th>1.033-2.067</th>
<th>1.64-3.28</th>
<th>2.62-5.25</th>
<th>4.1-8.2</th>
<th>>6.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Feeling</td>
<td>not uncomfortable</td>
<td>a little uncomfortable</td>
<td>fairly uncomfortable</td>
<td>uncomfortable</td>
<td>very uncomfortable</td>
<td>extremely uncomfortable</td>
</tr>
</tbody>
</table>

Source: ISO 2631-1
Vibration and Speed

• How to reduce vibration?

• If speed goes down 10 mph, r.m.s of vertical acceleration will decrease 0.653.
Preliminary Findings

- The influence of bump on speed is limited (less than 1 mph).
- Decreasing driving speed can reduce vibration.
- Recommended speed for bridge is 10 mph less than connecting pavement.
Future Study

- Crash Analysis involving vibration data at bridge-related area
- Extend the sample size
- Provide maintenance time
Thank you!

Suggestions and Questions?