Catalog Description: Image files, thresholding, histogram transformation, spectra, connectedness, edges, filtering, detection and recognition of objects, optical character recognition.

Prerequisites: CS202 and MATH/STAT 352. If you do not meet the prerequisite requirements for this course, you should see me immediately. Credit hours: 3.0

Meets: MW 2:30pm – 3:45pm (SEM 257)

Instructor: Dr. George Bebis

Office: 241/242 SEM

Phone: (775) 784-6463

E-mail: bebis@cse.unr.edu

Course Webpage: http://www.cse.unr.edu/~bebis/CS474

Office Hours: MW 4:00pm - 5:30pm and by appointment

Required Text:

Optional Texts:

Objectives

Digital image processing is among the fastest growing computer technologies. With increasing computer power, it is now possible to do numerically many tasks that were previously done using analogue techniques. This course will provide an introduction to the theory and applications of digital image processing.

Course Outline (tentative)

- Introduction
- Intensity Transformations
- Geometric Transformations
- Spatial Filtering
- Fourier Transform
- Convolution
- Frequency Domain Filtering
- Sampling
- Image Restoration
- Short-Time Fourier Transform
- Multi-resolution Analysis
- Wavelets
- Image Compression
- Applications

Exams and Assignments

Grading will be based on two exams, several programming assignments, and a course project. Details are provided below:

- Homework problems will be assigned on a regular basis but will NOT be collected for grading. Homework solutions will be made available for each assignment.

- There will be two exams: a midterm and a final. The material covered in the exams will be drawn from the lectures and the homework.

- There will be several quizzes during the semester which will be announced at least one class period in advance.

- There will be 4-5 programming assignments which should be done in groups of two students.

- Graduate students will be required to present a paper to the rest of the class. Each presentation should be 20 minutes long and professional as if it was presented in a formal conference (i.e., slides/projector). The instructor will provide potential topics for presentation but students are also welcome to propose their own topics (subject to instructor’s approval).
Course Policies

- Lecture slides, assignments, and other useful information will be posted on the course web page.
- Both exams will be closed books, closed notes. If you are unable to attend an exam you must inform me in advance. Exams cannot be made up unless there is an extreme emergency.
- Discussion of your work with others is allowed and encouraged. However, each student should do his/her own work. **Assignments which are too similar will receive a zero.**
- **No** late work will be accepted unless there is an extreme emergency. If you are unable to hand in your work by the deadline, you must discuss it with me **before** the deadline.
- No incomplete grades (INC) will be given in this course and a missed exam may be made up only if it was missed due to an extreme emergency.
- Regular attendance is highly recommended. If you miss a class, you are responsible for all material covered or assigned in class.

Useful Tips

Since the material in this course is highly integrated, a limited understanding of one topic will have a serious effect on the understanding of subsequent topics. You should expect to spend many hours on this course outside the classroom. Do not expect to fully understand the material covered in this class if you do not spend many hours in front of your computer.

Don’t get behind in the programming assignments. Probably the main reason for students doing poorly in this course is getting behind in the assignments and never recovering. Design and implement in a top-down, modular fashion. Get something working that has the skeleton structure of what you need and then add features to it. Each time you add a feature, test it and make sure everything is still working. It can be tough to debug big programs if all you know is that the output is wrong and you are not sure anyone module is working. In addition, partial credit will be given for a program which at least partially works while it is very difficult to give credit for a program which may have many features but is not doing anything correctly.
Academic Dishonesty

Cheating, plagiarism or otherwise obtaining grades under false pretenses" constitute academic dishonesty according to the code of this university. Academic dishonesty will not be tolerated and penalties can include canceling a student's enrollment without a grade, giving an F for the course or for the assignment. For more details, see the UNR General Catalog.

Disability Services

Any student with a disability needing academic accommodations is requested to speak with me or contact the Disability Resource Center (Thompson Building, Suite 101), as soon as possible to arrange for appropriate accommodations.

Academic Success Services

Your student fees cover usage of the Math Center (784-443 or www.unr.edu/mathcenter/), Tutoring Center (784-6801 or www.unr.edu/tutoring/), and University Writing Center (784-6030 or http://www.unr.edu/writing_center/). These centers support your classroom learning; it is your responsibility to take advantage of their services. Keep in mind that seeking help outside of class is the sign of a responsible and successful student.

Audio and Video Recording

Surreptitious or covert video-taping of class or unauthorized audio recording of class is prohibited by law and by Board of Regents policy. This class may be videotaped or audio recorded only with the written permission of the instructor. In order to accommodate students with disabilities, some students may have been given permission to record class lectures and discussions. Therefore, students should understand that their comments during class may be recorded.
Grading Scheme

Quizzes: 10%
Midterm Exam: 25%
Final Exam: 25%
Prog. Assign: 40%
Presentation: 10% (grad students only)

A 90 and above
B 80-89
C 70-79
D 60-69
F <59

Important dates

9/7/2015 – Labor Day (no class)
10/14/2015 – Midterm exam
10/28/2015 – Final Day to Drop a Class
11/11/2015 – Veterans Day (no class)
12/9/2015 – Prep Day
12/16/2015 - Final exam (12:30pm – 2:30pm)
Course Assessment Matrix

CS 474 Image Processing and Interpretation

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>Course Outcomes</th>
<th>Assessment Methods/Metrics</th>
<th>CSE Program Objectives Impacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Students demonstrate a thorough understanding of fundamental concepts in image processing (image filtering, enhancement, restoration, and compression).</td>
<td>Quizzes and Exams.</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>Students design, implement and test various image processing algorithms in order to solve a practical problem.</td>
<td>Programming assignments 1, 2, and 4.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Students acquire an understanding of team dynamics by working in teams on the programming assignments.</td>
<td>Programming assignments</td>
<td>2, 3</td>
</tr>
<tr>
<td>5</td>
<td>Students are better prepared to analyze a problem and propose a solution that takes into consideration appropriate requirements.</td>
<td>Programming assignments 2, 4, and 5</td>
<td>1, 4</td>
</tr>
<tr>
<td>12</td>
<td>Students are better prepared to apply mathematical concepts, algorithmic principles, and programming concepts to design efficient image processing algorithms by considering design trade-offs.</td>
<td>Final exam question 2; programming assignment 3.</td>
<td>3</td>
</tr>
</tbody>
</table>
Program Outcomes:
Our graduates will have achieved:

1. **an ability to apply knowledge of computing, mathematics, science, and engineering.**
2. an ability to design and conduct experiments, as well as to analyze and interpret data.
3. **an ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs, within realistic constraints specific to the field.**
4. **an ability to function effectively on multi-disciplinary teams.**
5. **an ability to analyze a problem, and identify, formulate and use the appropriate computing and engineering requirements for obtaining its solution.**
6. an understanding of professional, ethical, legal, security and social issues and responsibilities.
7. an ability to communicate effectively with a range of audiences.
8. the broad education necessary to analyze the local and global impact of computing and engineering solutions on individuals, organizations, and society.
9. a recognition of the need for, and an ability to engage in continuing professional development and life-long learning.
10. a knowledge of contemporary issues.
11. an ability to use current techniques, skills, and tools necessary for computing and engineering practice.
12. **an ability to apply mathematical foundations, algorithmic principles, and computer science and engineering theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.**
13. an ability to apply design and development principles in the construction of software systems or computer systems of varying complexity.

Computer Science & Engineering Program Objectives:
Within 3 to 5 years of graduation our graduates will:

1. be employed as computer science and engineering professionals beyond entry level positions or be making satisfactory progress in graduate programs.
2. have peer-recognized expertise together with the ability to articulate that expertise as computer science and engineering professionals.
3. apply good analytic, design, and implementation skills required to formulate and solve computer science and engineering problems.
4. demonstrate that they can function, communicate, collaborate and continue to learn effectively as ethically and socially responsible computer science or computer engineering professionals.